If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+64t-40=0
a = -16; b = 64; c = -40;
Δ = b2-4ac
Δ = 642-4·(-16)·(-40)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{6}}{2*-16}=\frac{-64-16\sqrt{6}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{6}}{2*-16}=\frac{-64+16\sqrt{6}}{-32} $
| (x-3)=(8x+3) | | 10x+75=90 | | 10x+25=90 | | x^2-4/x^2-x-6=3x-10 | | 18z^2-43z=0 | | 6/x-5+3+x=x+9 | | 15y-10y=2(5y+6) | | 2x-9=-9x-119 | | 5^x=37500 | | 124-n=7 | | 2^(x)-10(2^(x))+16=0 | | 5x-7=8x-2 | | 2x-9=(-9x)-119 | | 2h=314 | | x-24+29=290 | | x-24+29=29 | | h+h+4=374 | | 2x+10=-4x+20 | | 2x-9=(-9)-119 | | 6x/x-5-8x-3/x-5=-3/5 | | h+h+6=374 | | 20=(-16s-20)+16s | | x+(x=26)=(x-2)=180 | | 9(x+3)−(2x+5)=0 | | 5x+2/3=-4x-1/2 | | -46=-42-70c+70c | | X^2-5x-6/1-x^2=4 | | 5(x-1)=5(2x+2) | | -3+y/5=-28 | | 5(x-1)=5(2x+2 | | 6*x-14=-32 | | 3w-2w-w+w+w=10 |